| (1)     (x - x1)2 
        + (y - y1)2 = r12 | (2)     (x - x2)2 
        + (y - y2)2 = r22 | 
| x2 - 2xx1 + x12 
        + y2 -2yy1 + y12 = r12 | x2 - 2xx2 + x22 
        + y2 -2yy2 + y22 = r22 | 
| (1) - (2)      2x(x2 
        - x1) + 2y(y2 - y1) + x12 - x22  
        + y12 - y22 
        = r12 - r22 | |
| if x2 - x1 > Epsilon x = ( r12 - r22 - ( 2y(y2 - y1) + x12 - x22 + y12 - y22) ) / 2(x2 - x1) else y = ... | |
| Then you replace x within (1) and you solve an equation of the second degree ......piece of cake but ... | |