
Do you wish you could hear the audio and read
the transcription of this session?
Then come to JavaOneSM Online where this session is available
in a multimedia tool with full audio and transcription synced with
the slide presentation.

JavaOne Online offers much more than just multimedia sessions.
Here are just a few benefits:

• 2003 and 2002 Multimedia JavaOne conference sessions
• Monthly webinars with industry luminaries
• Exclusive web-only multimedia sessions on Java technology
• Birds-of-a-Feather sessions online
• Classified Ads: Find a new job, view upcoming events, buy or
sell cool stuff and much more!

• Feature articles on industry leaders, Q&A with speakers, etc.

For only $99.95, you can become a member of JavaOne Online
for one year. Join today!

Visit http://java.sun.com/javaone/online for more details!

| JavaOne 2003 | Session 2125

Kenneth Russell
Sun Microsystems, Inc.

Christopher Kline
Irrational Games

Gerard Ziemski
Apple Computer

Advanced OpenGL®
for the Java™
Platform

| JavaOne 2003 | Session 21252

Presentation Goal

Demonstrate the latest 3D graphics
techniques available through the
OpenGL® API and the Java™
programming language

| JavaOne 2003 | Session 21253

Speakers’ Qualifications

• Kenneth Russell works on the Java
HotSpot™ Virtual Machine at Sun
Microsystems and has nine years of 3D
graphics experience

• Christopher Kline is a lead programmer for
Irrational Games, makers of System Shock II
and Freedom Force, and has over six years
of 3D graphics experience

• Gerard Ziemski works on the graphics
libraries for the Java™ platform at Apple
Computer and has over four years of 3D
graphics experience

| JavaOne 2003 | Session 21254

Real-time Graphics in Transition

We are finally leaving behind
the stone age of real-time 3D
graphics programming.

| JavaOne 2003 | Session 21255

Agenda

• What’s new in real-time graphics?

• OpenGL interfaces for the Java™ platform

• Demos and Tutorials
- Fixed-function pipeline
- Programmable pipeline
- Shadows
- High-level shading languages

| JavaOne 2003 | Session 21256

Real-time 3D Graphics Timeline

• Early 1990s: SGI and E&S pioneer dedicated
(and expensive!) graphics hardware

• Late 1990s: VGA controllers make way for
more powerful, mass-market GPUs

• GPU Generation 1 (< 1998): basic rasterization
and texturing

• GPU Generation 2 (1999–2000): hardware T&L,
better blending and texturing options

• GPU Generation 3 (2001): programmable
(but limited) vertex and pixel shaders

• GPU Generation 4 (2002): floating point
framebuffers, lengthy vertex and pixel shaders

| JavaOne 2003 | Session 21257

Trend: Increasing Programmability

• Trend from configurability to programmability:
- Fixed blending modes: limited configurability
- Register combiners: more configurable
- Vertex and fragment programs: finally,

assembly-level control of transformation
and shading

- Now high-level languages and compilers
- Soon: a unified data model; hardware support

for loops and conditionals

| JavaOne 2003 | Session 21258

What Does This Mean
for Programmers?

• In the future, graphics programming will focus
less on data management and configuration

• Innovation will be in the area of sophisticated
visual effects algorithms

• Pixar and ILM-caliber effects are within the
reach of the desktop

• Latest features are now available to the
Java™ platform

| JavaOne 2003 | Session 21259

OpenGL Interfaces
for the Java™ Platform

• Several bindings available
- “ OpenGL, for Java™ Technology”

(abbreviated “gl4java”)
- LWJGL (Lightweight Java™ Game Library)
- Magician
- Jungle

• Brief discussion of each

| JavaOne 2003 | Session 212510

OpenGL Interfaces
for the Java™ Platform

• “ OpenGL, for Java™ Technology”
(abbr. “gl4java”)
- One of the oldest and most popular bindings
- Runs on nearly every platform
- Integrates with AWT and Swing
- Supports, but not designed for, New I/O
- Open source
- Supports only up to OpenGL 1.3, but

exposes vendor extensions
- API is complex
- Difficult to maintain and enhance

| JavaOne 2003 | Session 212511

OpenGL Interfaces
for the Java™ Platform

• LWJGL (Lightweight Java™ Game Library)
- Supports latest features (OpenGL 1.4 with

vendor extensions)
• Innovative organization of extensions

- Designed for New I/O
- Additional support for audio (OpenAL)

and game input devices
- Supports full-screen rendering
- Open source
- Does not support AWT and Swing integration
- Exposes pointers as longs

• Destroys type safety

| JavaOne 2003 | Session 212512

OpenGL Interfaces
for the Java™ Platform

• Magician
- Clean API
- Integrated with AWT and Swing
- Innovative composable pipeline

(e.g., DebugGL)
- Did not support New I/O
- Defunct (no longer being developed

or shipped)
- Was never open source

| JavaOne 2003 | Session 212513

OpenGL Interfaces
for the Java™ Platform

• Jungle
- New OpenGL interface for the Java™ platform
- Supports OpenGL 1.4 and vendor extensions
- Integrates with AWT and Swing
- Designed for New I/O
- Clean, minimalist API
- Supports composable pipeline (e.g., DebugGL)
- Open source
- Written almost entirely in Java™ programming

language
• AWT Native Interface, WGL and GLX bound into

Java™ programming language using GlueGen

| JavaOne 2003 | Session 212514

OpenGL Interfaces
for the Java™ Platform

• GlueGen
- Parses C header files using ANTLR
- Generates intermediate representation

expressing primitive types, function prototypes,
structs, unions and function pointers

- Autogenerates Java™ programming language
and JNI code

- Powerful enough to bind AWT Native Interface
back into Java programming language

• Enabled Jungle to be written in Java
programming language instead of C

- Open source; part of Jungle package

| JavaOne 2003 | Session 212515

OpenGL Interfaces
for the Java™ Platform

• Jungle
- Working in collaboration with Java™

Gaming Initiative
- Has been adopted as JGI’s OpenGL binding
- Now named “Jogl”
- Open source (modified BSD license)
- Available from http://jogl.dev.java.net/

| JavaOne 2003 | Session 212516

Demos and Techniques

• Illustrations of latest techniques
- Demonstrations borrowed from

several sources
- Ported where necessary to Java™

programming language
- Utilizing Jungle OpenGL interface

| JavaOne 2003 | Session 212517

Overview of Demos and Tutorials

• Fixed-function pipeline

• Programmable pipeline

• High-level languages

• Larger demos

| JavaOne 2003 | Session 212518

Fixed-function Pipeline

• Basically a “black box” that generates images
according to a standard set of algorithms

• You supply the input data
- Vertex attributes, connectivity, textures

• You configure the algorithm parameters
- Transform matrices, blending modes,

light colors, data formats, etc.

• No programmability, only configurability

| JavaOne 2003 | Session 212519

Fixed-function Pipeline

• Why use the fixed-function pipeline?
- Easy to understand
- Best availability
- Only option on legacy hardware

• Core OpenGL 1.3 and earlier

• Still powerful!

| JavaOne 2003 | Session 212520

Example: The Virtual Fishtank

• Developed by Nearlife, Inc.
http://www.nearlife.com/

• Developed in 1998; now at the Boston
Museum of Science, with a second installation
in the St. Louis Science Center

• Museum exhibit designed to teach children
about emergent self-organizing behavior
within decentralized rule-based systems

| JavaOne 2003 | Session 212521

Example: The Virtual Fishtank

• Distributed simulation running 15 networked
machines, rendered on 13 large projection
screens, simulating a 24,000 gallon aquarium

• Fish migrate from server to server as they
swim from screen to screen

• Written entirely in Java™ programming
language; Originally used Java™ 3D software,
later ported to custom OpenGL-based
renderer

| JavaOne 2003 | Session 212522

Example: The Virtual Fishtank

DEMO

| JavaOne 2003 | Session 212523

Programmable Pipeline

• What is the programmable pipeline?
- Allows you to replace “black box” components

of FF-pipeline with your own implementation

• What does it replace?
- Vertex shaders

• Transformation and lighting of vertices
- Fragment shaders

• Texturing, fog, color sum

| JavaOne 2003 | Session 212524

Programmable Pipeline

• Program the rendering process instead of
configuring it

• Wow, I can do anything I want to?
- Yes, but if you choose to replace anything,

you have to implement everything
- Great power at the cost of great responsibility

| JavaOne 2003 | Session 212525

Programmable Pipeline

• Why use the programmable pipeline?
- Can be more efficient

• Higher-quality results with less detailed
geometry

• Don’t need multi-pass to accumulate
intermediate results

• Cut corners or customize to your needs
- Do things that aren’t possible with FF pipeline

• Non-standard lighting models
- Humans perceive detail by observing how

light interacts with a surface
• More control over light means more

impressive graphics

| JavaOne 2003 | Session 212526

Vertex Shaders

• Calculate all attributes of one particular vertex
- No access to other vertices!
- No hand holding: you must code all

calculations yourself
- Vertex position, normal, colors, texture

coords, fog depth

• Additional input registers for arbitrary
constants:
- Transform matrices, light information, time, etc.
- Parameters to your VS “function”

| JavaOne 2003 | Session 212527

Vertex Shaders

• Output is used as input to fragment shader
- Interpolated

• Assembly language syntax
- Can be compiled from high-level language

• Nvidia Cg
• OpenGL GLSL
• Microsoft DX9 HLSL

| JavaOne 2003 | Session 212528

Vertex Shaders

• Example: 3-Component Normalize

#
Assume R1 = (nx,ny,nz)
#
Calculate:
R0.xyz = normalize(R1)
R0.w = 1/sqrt(nx*nx + ny*ny + nz*nz)
#
DP3 R0.w, R1, R1;
RSQ R0.w, R0.w;
MUL R0.xyz, R1, R0.w;

| JavaOne 2003 | Session 212529

Vertex Shaders

• Can arbitrarily swizzle components
of registers
- No additional cost
- Good for vector math operations
- Save instructions, render faster
- Impress your friends

| JavaOne 2003 | Session 212530

Vertex Shaders

• Example: 3-Component Cross Product

Calculate R2 = R0.cross(R1)
#
Cross product | i j k | into R2.
| R0.x R0.y R0.z |
| R1.x R1.y R1.z |
#
R2.x = (R0.y*R1.z – R0.z*R1.y)
R2.y = (R0.z*R1.x – R0.x*R1.z)
R2.z = (R0.x*R1.y – R0.y*R1.x)
#
MUL R2, R0.yzxw, R1.zxyw; # Swizzle
MAD R2, -R1.yzxw, R0.zxyw, R2; # Swizzle again

| JavaOne 2003 | Session 212531

Vertex Shaders: vtxprog_warp

DEMO
Nvidia vtxprog_warp

| JavaOne 2003 | Session 212532

Vertex Shaders: vtxprog_warp

• Several per-vertex distortion effects
- Wave, fisheye, spherize, ripple, twist

• Static effects compute vertex’s distance from
center point and scale according to function

• Dynamic effects based mostly on sine waves
- Computed on the GPU via Taylor series

approximation to sin(x)

• All effects’ programs contain small snippet
of code implementing diffuse lighting

| JavaOne 2003 | Session 212533

Vertex Shaders: vtxprog_refract

DEMO
Nvidia vtxprog_refract

| JavaOne 2003 | Session 212534

Vertex Shaders: vtxprog_refract

• Implements chromatic aberration through
multipass rendering
- Fresnel term determines fraction of light

transmitted as opposed to reflected
- Renders three times with fresnel terms

modified for differing wavelengths of red,
green and blue light

• Causes slightly different distortion for each

| JavaOne 2003 | Session 212535

Vertex Shaders: vtxprog_refract

• Vertex program computes approximation
to reflection/refraction based on vertex’s
relative position and normal to eye
- Approximation: only takes into account

forward-facing triangles, not the depth of
the surface

• Resulting rays are transformed into texture
coordinates into surrounding cube map

• Provides blended reflection and refraction
effects even in single pass and without
fragment shaders

| JavaOne 2003 | Session 212536

Vertex Shaders:
ProceduralTexturePhysics

DEMO
Nvidia ProceduralTexturePhysics

| JavaOne 2003 | Session 212537

Vertex Shaders:
ProceduralTexturePhysics

• Performs physical simulation of water entirely
on graphics card using texture maps as units
of computation

• Every pixel affects its nearest neighbors

• Vertex program transforms vertices and
produces initial sets of texture coordinates

• Offset texture coordinates used in conjunction
with register combiners to perform
approximation to integration of water forces

• Blur (convolution) smooths result

| JavaOne 2003 | Session 212538

Fragment Shaders

• Calculate final visual appearance of
one fragment
- Operates on a rasterized pixel (a fragment)

• Sometimes called pixel shaders

• Input:
- Interpolated color, tex/fog coords,

window position
• Note: no world-space position, no normal!

- Additional registers for arbitrary constants

• Output:
- Color and depth of pixel

| JavaOne 2003 | Session 212539

Fragment Shaders

• Similar to vertex shaders
- No access to other pixels
- Must roll your own shading code
- Assembly syntax

• But different from vertex shaders
- Texture sampler assembly instructions
- No knowledge of geometry

| JavaOne 2003 | Session 212540

Fragment Shaders

Example:
Modulate diffuse color by texture color

sample texture color and load into R0
TEX R0, fragment.texcoord[0], texture[0], 2D;
load diffuse color into R1
MOV R1, fragment.color.secondary;
final color = diffuse * texture
MAD result.color,fragment.color.primary, R0, R1;

| JavaOne 2003 | Session 212541

Fragment Shaders

• FS of limited utility without VS support
- Remember, no knowledge of geometry
- Can do tricks in normalized device

coord space
• Position-based fades and masks
• Depth-based color (e.g., fake heat-vision)

- To do really interesting things, need geometric
information

• Use VS to smuggle geometry data into FS

Why No Standalone FS Demo?

| JavaOne 2003 | Session 212542

Combining Vertex and
Fragment Shaders

• Work together in unison
- VS writes geometry data into attributes that PS

can access (secondary color, tex/fog coords)
- PS reads this data to get geometry info

• Share the computational burden
- VS calculates low-frequency (per vertex) data
- PS calculates high-frequency (per pixel) data

• Good way to optimize performance

| JavaOne 2003 | Session 212543

VS + FS Example: Phong Lighting

• Ubiquitous model in computer graphics
- If it looks like plastic, it’s probably Phong

• Simple idea
- Surface should look shiniest where incident

light is reflecting directly into your face
- Less shiny as angle between reflected light

and observer direction increases
- Easy and efficient to implement

• OpenGL FF-pipeline vertex lighting is
Phong variant

| JavaOne 2003 | Session 212544

VS + FS Example: Phong Lighting

• Vertex shader
- Calculates vertex position and normal in eye

space, stores in texture coordinate sets 0 and 1

• Fragment shader
- Reads texture coordinates to retrieve (interpolated)

eye-space position and normal of fragment
- Reads light position passed in by program as

“arbitrary constant”
- Compares fragment position and normal with light

position to calculate specular highlight intensity

DEMO:
Cg Toolkit OpenGL Phong Lighting

| JavaOne 2003 | Session 212545

VS + FS Example: Phong Lighting

DEMO
NVidia Cg Toolkit OpenGL
Phong Lighting

| JavaOne 2003 | Session 212546

Shadows

• Why do we need shadows?
1) Humans use shadows to infer

spatial relationships
• Relative positions of objects
• Locations of light sources
• Shape of an object

2) Scene looks natural
3) Scene is easier to understand

| JavaOne 2003 | Session 212547

Shadows

• Why do we need shadows?

4) Technically speaking, shadows are “groovy”

| JavaOne 2003 | Session 212548

Shadows

• Two basic categories
- Render-to-texture

• Image-space technique
- Volumetric

• Geometric technique

| JavaOne 2003 | Session 212549

Render-to-texture Shadows

• Render the scene from the light’s perspective
• Store depth of rendered scene as texture
• Render scene from the viewer’s perspective
• Render the depth texture onto the scene

- Careful setup of texture transform and
texture-coord generation

• Object’s position maps to correct u-v
texture coords in depth texture

• Object’s r texture coord maps to distance
from the object to the light source

- If r-value is greater than texture value,
pixel is in shadow

| JavaOne 2003 | Session 212550

Render-to-texture Shadows

DEMO
NVidia Hardware Shadow Mapping

| JavaOne 2003 | Session 212551

Render-to-texture Shadows

Advantages
• Performance independent of geometric

complexity

• No additional cost for animated geometry

• Can take into account alpha-masked
geometry (example: a chain-link fence)

| JavaOne 2003 | Session 212552

Render-to-texture Shadows

Disadvantages:
• Dependent on texture resolution (aliasing)

- Not good for long projections

• Need special tricks to get self-shadowing
to work well

• Older hardware may not support render-to-
texture in hardware
- Fall back to slow framebuffer->texture copy

| JavaOne 2003 | Session 212553

Volumetric Shadows

Basic idea: Use geometry to calculate
volume of space that is in shadow

• Calculate silhouette edge of object, from
light’s perspective

• Extrude the silhouette away from the light

• Objects inside this volume are in shadow
from the light

| JavaOne 2003 | Session 212554

Volumetric Shadows

Uses stencil buffer for per-pixel in/out test
• Render scene, ambient light only

- Sets the depth buffer

• Render shadow volumes w/ stencil enabled
- Render front/back faces separately
- If pixel passes depth test, adjust stencil value

• Many adjustment heuristics (z-pass, z-fail)

• If stencil value is 0 afterwards, pixel is not
in shadow

| JavaOne 2003 | Session 212555

Volumetric Shadows

DEMO:
NVidia Infinite Shadow Volumes

| JavaOne 2003 | Session 212556

Volumetric Shadows

Advantages
• Self-shadowing “just works”

• No aliasing problems
- Crisp shadows, even at infinite

projection distances
- Good for wide-open spaces

| JavaOne 2003 | Session 212557

Volumetric Shadows

Disadvantages:
• Performance depends on scene

- Expensive for complex objects, many lights,
or many shadow receivers

• N lights = N+1 render passes per shadowed object
- Slow for non-static geometry/non-static lights

• Silhouettes must be recalculated each frame

• Incorrect shadows cast from alpha-masked
geometry
- Purely geometric technique

• Many subtleties to make it work correctly for all
intersections of light, viewer, and shadow volume

| JavaOne 2003 | Session 212558

Shading Languages

• What is a shading language?
- High-level language for programming

vertex and fragment operations
- Compiles down to low-level hardware

representation (assembly)
- Analogous to the relationship between

C and Assembly

| JavaOne 2003 | Session 212559

Shading Languages

• Why use a shading language?
- Create and re-use code libraries

• Borrow snippets from others
- Can be platform-independent

• Compile at run-time for target hardware
• Cross-platform development, easier porting

- Compiler is probably better at optimizing
than you are

| JavaOne 2003 | Session 212560

Shading Languages

• Why use a shading language?

 It’s just plain easier!

| JavaOne 2003 | Session 212561

Shading Languages

• Many shading languages available today
- NVidia Cg
- Microsoft DirectX9 HLSL
- OpenGL GLSL (soon)

• Derive from lots of prior art
- Pixar RenderMan
- Stanford Real-Time Shading Language
- UNC PixelFlow

| JavaOne 2003 | Session 212562

Shading Languages: Cg

• What is Cg?
- Product of NVidia corporation
- C-like language
- Hardware-independent
- Compiles to various forms of assembly

for vertex and pixel shaders

| JavaOne 2003 | Session 212563

Shading Languages: Cg

• Cg example: Phong lighting vertex shader
void main(float4 Pobject : POSITION,

 float3 Nobject : NORMAL,
 float2 TexUV : TEXCOORD0,
 float3 diffuse : TEXCOORD1,
 float3 specular : TEXCOORD2,
 uniform float4x4 ModelViewProj,
 uniform float4x4 ModelView,
 uniform float4x4 ModelViewIT,

 out float4 HPosition : POSITION,
 out float3 Peye : TEXCOORD0,
 out float3 Neye : TEXCOORD1,
 out float2 uv : TEXCOORD2,
 out float3 Kd : COLOR0,
 out float3 Ks : COLOR1) {
 // compute homogeneous position of vertex for rasterizer
 HPosition = mul(ModelViewProj, Pobject);

(Cont.)

| JavaOne 2003 | Session 212564

Shading Languages: Cg

• Cg example: Phong lighting vertex shader
 // transform position and normal from model-space
 // to view-space
 Peye = mul(ModelView, Pobject).xyz;
 Neye = mul(ModelViewIT, float4(Nobject, 0)).xyz;

 // pass uv, Kd, and Ks through unchanged;
 // if they are varying per-vertex, however,
 // they'll be interpolated before being
 // passed to the fragment program.
 uv = TexUV;
 Kd = diffuse;
 Ks = specular;
}

| JavaOne 2003 | Session 212565

Shading Languages: Cg

• Cg Phong vertex shader, compiled:
!!ARBvp1.0
ARB_vertex_program generated by NVIDIA Cg compiler
TEMP R0;
ATTRIB v26 = vertex.texcoord[2];
ATTRIB v25 = vertex.texcoord[1];
ATTRIB v24 = vertex.texcoord[0];
ATTRIB v18 = vertex.normal;
ATTRIB v16 = vertex.position;
PARAM c8[4] = { program.local[8..11] };
PARAM c4[4] = { program.local[4..7] };
PARAM c0[4] = { program.local[0..3] };
 MOV result.texcoord[2].xy, v24;
 MOV result.color.front.primary.xyz, v25;
 MOV result.color.front.secondary.xyz, v26;
 DP4 result.position.x, c0[0], v16;
 DP4 result.position.y, c0[1], v16;
 DP4 result.position.z, c0[2], v16;
 DP4 result.position.w, c0[3], v16;

(Cont.)

| JavaOne 2003 | Session 212566

Shading Languages: Cg

• Cg Phong vertex shader, compiled:

 DP4 result.texcoord[0].x, c4[0], v16;
 DP4 result.texcoord[0].y, c4[1], v16;
 DP4 result.texcoord[0].z, c4[2], v16;
 MOV R0.xyz, v18.xyzz;
 MOV R0.w, c12.x;
 DP4 result.texcoord[1].x, c8[0], R0;
 DP4 result.texcoord[1].y, c8[1], R0;
 DP4 result.texcoord[1].z, c8[2], R0;
END

| JavaOne 2003 | Session 212567

Shading Languages: Cg

• Why use Cg?
- OpenGL GLSL not yet available
- Cg compiles for many different backends

• OpenGL
– Both ARB and vendor-specific shader

extensions
• DirectX 8 and 9

- Cg comes with the Cg Runtime Library
• Easy to load, compile, and set up your

vertex and fragment shaders

| JavaOne 2003 | Session 212568

Shading Languages: Cg

Demo:
NVidia Cg Bump Mapping Demo

| JavaOne 2003 | Session 212569

Shading Languages: Cg

• Vertex program computes texture coordinates
into normal map given surface normal, tangent
and binormal per-vertex

• Fragment program takes computed texture
coordinates and looks up per-pixel surface
normal in normal map

• Lighting done in fragment shader using 2D
lookup table given lighting angle and half-angle

Demo:
NVidia Cg Bump Mapping Demo

| JavaOne 2003 | Session 212570

Dobie Demonstration

• Developed by the Synthetic Characters
Group at The Media Lab, MIT
- http://www.media.mit.edu/characters/

• Autonomous animated dog that can be
trained with “clicker training” technique
- Recognizes and uses utterances as cues

for actions
- Synthesizes new actions from novel paths

through motion space
- Learns through both positive and negative

reinforcement

| JavaOne 2003 | Session 212571

Dobie Demonstration

• Research is in models of motivations, actions
and action selection, and learning
- System written in Java™ programming

language
• Small amount of native code for custom

input devices
- Uses OpenGL as rendering API

• Recently ported to Jungle
- Runs on multiple operating systems

• Macintosh OS X primary development platform

| JavaOne 2003 | Session 212572

Dobie Demonstration

Demo

| JavaOne 2003 | Session 212573

High Dynamic Range Rendering

Demo:
NVidia High Dynamic Range Rendering

| JavaOne 2003 | Session 212574

High Dynamic Range Rendering

• NVidia High Dynamic Range Rendering Demo
- Courtesy Simon Green, NVidia

• Normal 24-bit RGB images don’t have enough
dynamic range to represent natural scenes
- 0–255 values can represent brightness

variations of factor of 255
- Natural scenes have brightness variations

of factors of 10,000
- Highlight of Sun on roof of car compared

to shadow on asphalt underneath car

| JavaOne 2003 | Session 212575

High Dynamic Range Rendering

• Represent textures as floating-point RGB
values instead of bytes

• Convolution and similar operations in image
space become analogues of real-world
camera effects like focus

• Can now perform these image-space
operations in real time using hardware
accelerated offscreen rendering in conjunction
with vertex and fragment shaders
- All of this functionality now accessible from

Java programming language

• Future of real-time computer graphics

| JavaOne 2003 | Session 212576

Acknowledgments

• Nearlife, Inc.
- Tinsley Galyean

• NVidia Corporation
- Simon Green

• Synthetic Characters Group,
The Media Lab, MIT
- Marc Downie

| JavaOne 2003 | Session 212577

Summary

• All leading-edge 3D graphics effects going
forward will be achieved with hardware
programmability

• OpenGL provides vendor-neutral, platform-
independent access to the hardware

• Java™ programming language and Jungle
OpenGL interface provide easy-to-use,
portable and powerful development
environment

| JavaOne 2003 | Session 212578

If You Only Remember One Thing…

The Java™ programming language
and the OpenGL 3D graphics API are
the keys to developing leading-edge
client-side applications.

| JavaOne 2003 | Session 2125

Q&A

| JavaOne 2003 | Session 212581

Vertex Shaders: vtxprog_refract

DEMO
Nvidia vtxprog_refract

